COMPILATEUR DE
LANGAGE C]

Presentes par: Fncadré par:

El walid Abolaakoul MR.Abdeljalil SAKAT
Ahmed Ben Ahmed

-

HISTOIRE

j BOOTSTRAPPING DES COMPILATEURS I_

LES COMPILATEURS ETAIENT ENCORE RARES, ET LA PLUPART DES
LOGICIELS ETAIENT ECRITS DIRECTEMENT EN CODE MACHINE.

1950 FORTRAN, 1970 C (OS UNIX), CPP, JAVA, PYTHON3.11

CREER UN PROGRAMME SIMPLE POUR EN FAIRE UN
PROGRAMME PLUS COMPLEXE.

OMPILER STEPS

High level language

|

Lexical Analyzer - Compiler Front-End

- Compiler Back-End

Syntax Analyzer

R Scmantic Analyzer SEEEEECERY

Symbol Table Yl .
Y e [ntermediate Code Generator gRatlEEEE Error Handler
WERET-(g e

Code Optimizer

Target Code Generator

Peephole Optimizer

Assembly Code

FRONT-END DU
| COMPILATEUR: |

PRODUIT UN CODE
INTERMEDIAIRE (IR)

PEU IMPORTE LE LANGAGE D'ENTREE OU
L'ARCHITECTURE CIBLE (EX : GCC SUPPORTE
PLUSIEURS LANGAGES).:

LE CODE INTERMEDIAIRE EST SIMPLE ET
STANDARDISE,PLATFORME INDEPENDANT,
FACILITANT LES OPTIMISATIONS

IL SUFFIT DE REECRIRE LE BACK-END POUR
CHAQUE MACHINE CIBLE(MAC OU PC), CE
QUI ECONOMISE BEAUCOUP DE TRAVAIL

ROMINA JAFARIAN (TEHERAN) A CREE UN
INTERPRETEUR

EXECUTER DIRECTEMENT LE CODE I_
INTERMEDIAIRE A TROIS ADRESSES GENERE
PAR LE FRONT-END

SANS PASSER PAR L'ASSEMBLAGE OU LE —
LINKING, FACILITANT AINSI LE TEST DU
COMPILATEUR, DEBOGAGE

Exemples [modifier]

Dans le code a trois adresses, cela serait decompose en plusieurs instructions distinctes. Ces instructions se traduisent plus
facilement par langage d'assemblage. |l est egalement plus facile a detecter sous-expressions communes pour raccourcir le

— COde. Dans 'exemple suivant, un calcul est compose de plusieurs plus petits: —
Calculer une solution & la [[equation tl:= b * b
guadratique]]. t2 := 4 * 3
x = (-b + sgrt(b"2 - 4%a*c)) / (2*a) t3:= t2 ¥ ¢
td4:= 1 - t3
t5:= sqgrt(t4)
t6:= 8 - b
t7:= t5 + t6
T t8 1= 2 * 3 -
t9:= t7 /t8
¥:i= t9

LEXICAL

) ANALYSER

simple-c-compiler > input > input_hello_ world.c > &) main{void)

void main{void)
output(1234);

(KEYWORD, void) (ID, main) (SYMBOL, () (KEYWORD, void) (SYMBOL,)} (SYMBOL, {)
(ID, output) (SYMBOL, () (NUM, 1234) (SYMBOL,)) (SYMBOL, ;)
(SYMBOL, })

Token type

KEYWORD

ID

MNUM

S5YMBOL

WHITESPACE

COMMENT

Description

Reserved keywords are essential to the program syntax and parsing. They are
usually associated with many code generation and type checking steps. They
can also be thought as hints for the compiler to produce certain intermediate
code instructions in certain parts of the program. For example void keyword
in our example denotes the type of the function or its arguments. This means
they have no type i.e. the type doesn't exist, which in the typical programming
notation translates to the function not returning anything or not accepting any
arguments. It is essential for the compiler to know this to produce correct
programs, hence these are reserved "keywords" that can't be used as variable
or function names.

An identifier which can be any name (except a KEYWORD) for a variable,
argument or a function. These are stored in the symbol table (see figure
above) as rows and different attributes are associated with them such as their
address in memory or the type of the identifier (e.g it is a function, variable or
function argument).

Numerical constant values (in our case integers) used in the computation.
These are the very core of every program as playing with numbers and doing
computation is essentially what every program does and variables typically
need to be initialized with numbers before they can do anything useful
(sometimes they're initialized with user input though). We could also have
similar type for character string literals but they are not part of the
implementation of our Simple C Compiler.

Any special character, which is a part of the program syntax such as
parentheses or brackets used to divide program into meaningful sections or
computational units like functions or function argument lists.

It might be useful to have this token type as well for spaces, new lines, tabs
etc. when implementing the lexical analyzer (for example to know where a
word ends), but this type of token is just discarded in the end (as you can see
from the example output). This is because the syntax of our programming
language is not interested in how many whitespaces there are between words
and symbols, they are only needed to separate different meaningful tokens.

This token is similar to WHITESPACE because it's also discarded from the token
stream. It consists of the whole comment block or line (in case of line
comment starting with //). This "token” type is somewhat counter intuitive as
its lexim can consist of whole paragraphs of English sentences, but it's useful
for implementing the lexical analyser.

DANS UN COMPILATEUR A PASSAGE UNIQUE ET EN
PIPELINE, ON TRAITE UN TOKEN A LA FOIS, REDUISANT
AINSI L'UTILISATION DE LA MEMOIRE, MEME AVEC DE

GRANDS FICHIERS SOURCE.

DANS DES LANGAGES COMME LE C, L'ORDRE DES
DECLARATIONS DE FONCTIONS EST IMPORTANT, UNE
CONSEQUENCE DE LA COMPILATION A PASSAGE
UNIQUE

DANS UN COMPILATEUR A PASSAGE UNIQUE ET EN
PIPELINE, ON TRAITE UN TOKEN A LA FOIS, REDUISANT
AINSI L'UTILISATION DE LA MEMOIRE, MEME AVEC DE

GRANDS FICHIERS SOURCE.

10

ALORS TOUT SIMPLEMENT ON TRAITE LE CODE POUR
VERIFIER SON LEXIQUE

| ET ON FAIT CELA TOKEN APRES TOKEN |

ON RETOURNE LE RESULTAT DE CETTE ANALYSE HMMM

QUI PEUT FAIRE CA 22?
11

-

AUTOMATE FINI DETERMINISTE

12

token dfa (

L ANALYSE SYNTAXIQUE

Le parseur : une etape clé dans les compilateurs.

Transforme les tokens (produits par I'analyse lexicale) en
une structure compréhensible.

if (a <b) {

. (KEYWORD, if) (SyYyMBOL, () (ID, a) (SYMBOL, <) (ID, b) (SYMBOL,)) (SYMBOL, {)
return 2 + 2;

(KEYWORD, return) (NUM, 2) (SYMBOL, +) (NUM, 2) [(SYMBOL, ;)|

D }

L'analyse syntaxique est une étape essentielle dans les
compilateurs. Elle permet de vérifier si le programme respecte
les regles de la grammaire. Le parseur transforme les tokens,
fournis par |'analyse lexicale, en une structure logique. 1 5

L ANALYSE SYNTAXIQUE

e || construit une structure appelée arbre de syntaxe.
e Utilise une grammaire pour comprendre le programme.

o |dentifie les erreurs syntaxiques.

L'analyse syntaxique est une étape essentielle dans les compilateurs. Elle
permet de verifier si le programme respecte les regles de la grammaire. Le
parseur transforme les tokens, fournis par I'analyse lexicale, en une structure

logique. 1 6

L ANALYSE SYNTAXIQUE

Il construit une structure appelée arbre de syntaxe.

If(condition, then)

condition

i-F (a < b) { Binary(operator, left, right)

return 2 + 2;

} left

operator

I Var('a') LessThan

Voici un exemple d’'arbre de syntaxe. Chaque noeud représente une
partie importante de la structure, comme les opérateurs ou les
variables. Les feuilles, elles, représentent les élements élémentaires de
notre programme.

right

Var('b")

Return(exp)

exp

L]

Binary(operator, left, right)

Constant(2)

left operator

Add

Constant(2)

L ANALYSE SYNTAXIQUE

Il construit une structure appelée arbre de syntaxe.

Expression
L simple-expression-zegond
— Additive-expression-zegond
— Term-zegond
|— Factor-zegond
| b (num, 1)
— G

void main(void) { L EpsILON

L— D

— Addop

DUTPUT{]- + 2}; L— (syMBOL, +)

— Term

I } |_ Factopr CE—

| (num, 2)
L— G

L — EPSILON

L— p
L — EpsILON

Voici un exemple d’'arbre de syntaxe. Chaque noeud représente une
partie importante de la structure, comme les opérateurs ou les L ¢
variables. Les feuilles, elles, représentent les élements élémentaires de L — EPSILON
notre programme. 1 8

L ANALYSE SYNTAXIQUE

Utilise une grammaire pour comprendre le programme.

<programme> ::= <instruction>

if (a <b) {

return 2 + 2;
} <expression> ::= <terme> | <terme> <opérateur> <terme>

<instruction> ::="if" "(" <expression> ")" "{" <instruction> "}" | "return" <expression>";"

<terme> ::= <identifiant> | <entier>

Voici un exemple d’'arbre de syntaxe. Chaque noeud représente une
partie importante de la structure, comme les opérateurs ou les
variables. Les feuilles, elles, représentent les élements élémentaires de
notre programme. 1 9

L ANALYSE SYNTAXIQUE

Supposons que nous ayons cette grammaire LL(1)...

tokens coming from the scanner

: id and for) { |} = $
=3 S —>A; | for (A ; C; A) S| B S A A for (A;C;A)S B | synch
4-5 A —>V=E| ¢ A 3 V=E 3 £
6-7 C > E | ¢ C| ¢ b :
E | synch V synch synch
8 E = V V | synch | id X synch | synch | synch
9 V. — 1d X X 3 and V 3 | £ 3
10-11 X — and V | € B | synch | synch synch {L}| synch
13-14 L —- S L | ¢
the non-terminal lying on the top of the stack of the LL(1)
Synch ???
Une grammaire LL(1) est un type particulier de grammaire hors- En parsing, synch est utilisé pour la récupération des erreurs,
contexte qui peut étre encodée de maniere non ambigué dans une table notamment dans les algorithmes de parsing LL(1).
de parsing en deux dimensions, tout en ne regardant qu'un seul jeton a Cela améliore la robustesse du parseur en lui permettant de 20
la fois (exactement comme nous le souhaitons!). gérer plusieurs erreurs sans arréter I'exécution.

L ANALYSE SYNTAXIQUE

Prenons 'exemple: foridand =idid;;); $

Stack Input Action Error forlid [and| = | id | id | eee
S$ foridand =idid;;);8 [for (A;C;A)S
for (A;C;A)SS for id and = id id ; ;) ; $ | terminal Next token is terminal “for”
(A;C;A)SS idand =idid;;); $ pop (Missing (7
A;C;A)SS idand =idid;;);$ |V=E Parse stack
V=E;C;A)S§$§ idand =idid;;); $ id X
idX=E;C;A)SS$ |idand=idid;;);$ terminal
dX=E;C;A)SS$ idand =idid;;); $ terminal Output production
X=E;C;A)SS$ and =idid;;);$ and V
and V=E;C;A)S$|and=idid;;);$ terminal Sl—=>|for (A ; C ; A) S
V=E;C;A)SS =ididz: ¥:$ pop V Missing Term
—E;C;A)SS =idid;;);$ terminal S " The contents of right hand side are
E;C;A)SS idid;;);$ vV Pop non-terminal pushed to parse stack, the parser asks
v ' C A) S § i id g] i g i X $ from top of the stack the scanner to give the next token “id”
. y ; g SR T . and continues parsing. O
idX;C;A)SS Il(l id ; ;) $ te_ll'ln?ual | | R AR i
& =0 & % S g id) }$; $ skip id Misplaced id for the next production
X;C;A)S 4 - £
;C;A)SS 5] % terminal ; | id | and for) { 1} = s |
CZ:'?L]Sg =) : & £ S] A; _ A for (A:C;A)S B synch |
;A)SS) 5 terminal ,:A : L E £ d ;:
A :] S$) : $ £ _E—__ !-i_\'H{l‘!.l_.) ‘» | _ r&_\'[l{.'l].] _ _:-;_\'l]f-_]_l
} S$) : ¢ terminal ;’: synch | id X - synch synch | synch
a . £ and £ £ £
38 ; S A B | synch | synch synch {L} synch
A;$; $ € L] SL | SL 5L ST |« :
- § = & terminal]
g g HALT Parsing table

L ANALYSE SYNTAXIQUE

j A ce stade, un arbre syntaxique abstrait (AST) est génér I—

/\
3 -
/\
b 4

22

ANALYSE
i SEMANTIQUE :

VERIFIE S| LE PROGRAMME EST LOGIQUE ET COHERENT
DANS SON CONTEXTE.

LE LEXER ET LE PARSER S'OCCUPENT DE LA STRUCTURE
SYNTAXIQUE DES PROGRAMMES, L'ANALYSEUR
SEMANTIQUE VERIFIE S| CES PROGRAMMES ONT UN SENS

LES REGLES DU LANGAGE AU-DELA DE LA GRAMMAIRE ET
DETECTE DES ERREURS QUI NE PEUVENT PAS ETRE
IDENTIFIEES PAR L'ANALYSEUR SYNTAXIQUE SEUL,

24

o LES ERREURS LIEES AU CONTEXTE.
o LES INCOHERENCES DE TYPE.
e L'UTILISATION INCORRECTE DE CONSTRUCTIONS DU

| LANGAGE. |

SORTIE DE L'ANALYSEUR SEMANTIQUE
IDEALEMENT : AUCUNE SORTIE !

- EN CAS D'ERREURS, ELLES SONT SIGNALEES SOUS FORME DE -
MESSAGES EXPLICITES.

25

e MAIN MANQUANTE : UNE FONCTION VOID MAIN(VOID) EST OBLIGATOIRE POUR

EXECUTER UN PROGRAMME.

e DECLARATION OBLIGATOIRE : LES VARIABLES DOIVENT ETRE DECLAREES AVANT UTILISATION
DANS LA PORTEE COURANTE.

. TYPE VOID INTERDIT ; LES VARIABLES NE PEUVENT PAS AVOIR LE TYPE VOID.
e ARGUMENTS DE FONCTION : VERIFIEZ LE NOMBRE ET LE TYPE DES ARGUMENTS PASSES A UNE
FONCTION.
e BREAK ET CONTINUE : CES INSTRUCTIONS NE PEUVENT ETRE UTILISEES QU'A L'INTERIEUR DES
BOUCLES.

e TYPES COMPATIBLES : LES OPERATIONS BINAIRES NECESSITENT DES TYPES COMPATIBLES POUR
EVITER LES ERREURS.

e TABLE DES SYMBOLES : ELLE EST MISE A JOUR AVEC LES TYPES ET LES DECLARATIONS POUR
CHAQUE VARIABLE.

e ERREURS SIGNALEES : LANALYSEUR NE GENERE PAS DE SORTIE, SAUF POUR SIGNALER DES

— ERREURS. —

e VALIDATION DES CONTEXTES : VERIFIE QUE CHAQUE INSTRUCTION EST UTILISEE DANS UN
CONTEXTE APPROPRIE.

e INFERENCE DE TYPES : LANALYSEUR DEDUIT LES TYPES DES EXPRESSIONS ET DES
IDENTIFICATEURS.

20

simple-c-compiler > modules > semantic_analyser.py > %¢ SemanticAnalyser >) check_declaration_routine

- . 5 n - S
~1-= = Sae — r (WL =
T Ly =

m
(]

L

nantic Analyser module of the Simple C Compiler

thor: Pasi Pyrrd
te: 16 March 2828
05
scanner SsymbolTableManager
code gen MemoryManager

ript_dir = os.path.dirname(os.path.dirname(os.path.abspath(_ file)))

= ™y - 5 q I o =
| |= o~ [- R T [= & | M |]

155 ﬁemanficﬂnélyser{nbject]:
def init (self):

self.semantic checks = {
“#SA INC SCOPE"™ : self.inc_scope routine,
“#SA DEC _SCOPE"™ : self.dec_scope_routine,

“#SA SAVE MAIN™ : self.save main_ routine,
“"#5A MAIN POP" : self.pop main_routine,
“"#SA MAIN CHECK"™ : self.check main_routine,

“#SA SAVE TYPE™ : self.save type routine,

“"#SA ASSIGN TYPE" : self.assign_type routine,

“"#SA ASS5IGN FUN ROLE"™ : self.assign_ fun_role routine,
“#5SA ASS5IGN VAR ROLE™ : self.assign var role routine,
“#SA ASSIGN PARAM ROLE™ : self.assign param role routine,
“H#SA ASSIGN _LENGTH" : self.assign length _routine,

Intermediate Code Generator module of the Simple C Compiler

Author: Pasi Pyrro
Date: 1 April 2826

scanner SymbolTableManager

script_dir = os.path.dirname(os.path.abspath(_ file))

class MeﬁﬂryMénagEP{nbject]:

Manages shared information about memory locations

@classmethod
def init(cls):
cls.static_base ptr
s.temp base ptr
s.stack base ptr

s.static offset
s.temp_offset

s.args _field offset
s.locals field offset
.arrays_field offset

.temps_field offset

5.pb_index

TERMINAL

INITIALISATION DE LA MEMOIRE : ASSIGNER DES VALEURS
CONSTANTES A DES ADRESSES MEMOIRE POUR STOCKER LES
RESULTATS.

OPERATION D'ADDITION : TRADUIRE L'ADDITION EN INSTRUCTION
INTERMEDIAIRE (ADD, #1, #2, 5000). |

VALIDATION DES TYPES : VERIFIER LA COMPATIBILITE DES TYPES
DES OPERANDES AVANT DE GENERER LE CODE.

UTILISATION DE LA MEMOIRE : STOCKER LE RESULTAT DE
L'ADDITION DANS UNE ADRESSE MEMOIRE (EX. 5000).

OPTIMISATION A POSTERIORI : SIMPLIFIER LE CODE GENERE EN
REDUISANT LE NOMBRE D'INSTRUCTIONS. 29

STOCKAGE DES RESULTATS : ASSOCIER CHAQUE CALCUL A UNE
ADRESSE MEMOIRE POUR UNE RECUPERATION FUTURE.

SECURITE DES VALEURS : VERIFIER QUE LES VARIABLES SONT
CORRECTEMENT TYPEES AVANT LE TRAITEMENT.

GENERATION DE TROIS ADRESSES : UTILISER UNE STRUCTURE A |
TROIS ADRESSES POUR CHAQUE OPERATION.

VERIFICATION DES ERREURS : IDENTIFIER LES ERREURS COMME LES
TYPES INCOMPATIBLES AVANT LA GENERATION DU CODE.

TRANSITION VERS LE CODE MACHINE : CONVERTIR LE CODE
INTERMEDIAIRE EN INSTRUCTIONS MACHINE APRES VALIDATION.

30

BACK END

FRONT END COMPILER BACKEND

source
code

Target-Dependent

>{ Lexical Analyzer

Code Optimizer

baku:n stream T assembly

‘ Parser Register Allocation
¢ MIDDLE END
syntax ree
: Target-Independent Target-Dependent
Semantic Analyzer r Code Optimizer Code Optimizer
Syntax tree unallocated
. “ | assembly
—> mmn"fmdmm Code || _ . Instruction Selection
Generator intermediate

representation

executable |«— Linker |«— Assembler |4———
object code assembly

LE BACK-END DU COMPILATEUR TRADUIT LE CODE INTERMEDIAIRE
EN CODE MACHINE SPECIFIQUE A L'ARCHITECTURE CIBLE.

L'ALLOCATION DE REGISTRES DANS LE BACK-END RESOUT UN
PROBLEME DE COLORIAGE DE GRAPHES POUR OPTIMISER
L'UTILISATION DES REGISTRES.

LE CODE INTERMEDIAIRE OPTIMISE EST TRANSFORME EN CODE
ASSEMBLEUR CIBLE AVEC UN PROCESSUS DE TABLE DE
CORRESPONDANCE.

LE PROCESSUS DE TRADUCTION EN ASSEMBLEUR EST UNE SIMPLE
RECHERCHE DANS UNE TABLE DE CORRESPONDANCES.

32

1

L’'OPTIMISATION PEEPHOLE AMELIORE LES INSTRUCTIONS
ASSEMBLEUR POUR RENDRE LE CODE PLUS EFFICACE SUR LE
MATERIEL CIBLE.

L’ASSEMBLEUR ET LE LINKER GENERENT UN FICHIER BINAIRE
EXECUTABLE A PARTIR DU CODE MACHINE.

LE BACK-END NECESSITE PLUSIEURS ETAPES DETAILLEES POUR

PRODUIRE UN BINAIRE, DEPENDANTES DE LA PLATEFORME CIBLE.

33

