
COMPILATEUR DE
LANGAGE C

Presentés par:
El walid Abolaakoul
Ahmed Ben Ahmed

Encadré par:
MR.Abdeljalil SAKAT



HISTOIRE
BOOTSTRAPPING DES COMPILATEURS

1950 FORTRAN,  1970 C (OS UNIX), CPP, JAVA, PYTHON3.11

  LES COMPILATEURS ÉTAIENT ENCORE RARES, ET LA PLUPART DES
LOGICIELS ÉTAIENT ÉCRITS DIRECTEMENT EN CODE MACHINE.

CRÉER UN PROGRAMME SIMPLE POUR EN FAIRE UN
PROGRAMME PLUS COMPLEXE.

1



COMPILER STEPS

2



FRONT-END DU
COMPILATEUR:

PRODUIT UN CODE
INTERMÉDIAIRE (IR)

3



PEU IMPORTE LE LANGAGE D'ENTRÉE OU
L'ARCHITECTURE CIBLE (EX : GCC SUPPORTE

PLUSIEURS LANGAGES).:

LE CODE INTERMÉDIAIRE EST SIMPLE ET
STANDARDISÉ,PLATFORME INDÉPENDANT,

FACILITANT LES OPTIMISATIONS

IL SUFFIT DE RÉÉCRIRE LE BACK-END POUR
CHAQUE MACHINE CIBLE(MAC OU PC), CE

QUI ÉCONOMISE BEAUCOUP DE TRAVAIL
4



ROMINA JAFARIAN (TÉHÉRAN) A CRÉÉ UN
INTERPRÉTEUR

EXÉCUTER DIRECTEMENT LE CODE
INTERMÉDIAIRE À TROIS ADRESSES GÉNÉRÉ

PAR LE FRONT-END

SANS PASSER PAR L'ASSEMBLAGE OU LE
LINKING, FACILITANT AINSI LE TEST DU

COMPILATEUR, DEBOGAGE
5



6



LEXICAL
ANALYSER

7



8



9



DANS UN COMPILATEUR À PASSAGE UNIQUE ET EN
PIPELINE, ON TRAITE UN TOKEN À LA FOIS, RÉDUISANT
AINSI L’UTILISATION DE LA MÉMOIRE, MÊME AVEC DE

GRANDS FICHIERS SOURCE.

DANS DES LANGAGES COMME LE C, L’ORDRE DES
DÉCLARATIONS DE FONCTIONS EST IMPORTANT, UNE

CONSÉQUENCE DE LA COMPILATION À PASSAGE
UNIQUE

DANS UN COMPILATEUR À PASSAGE UNIQUE ET EN
PIPELINE, ON TRAITE UN TOKEN À LA FOIS, RÉDUISANT
AINSI L’UTILISATION DE LA MÉMOIRE, MÊME AVEC DE

GRANDS FICHIERS SOURCE. 10



ALORS TOUT SIMPLEMENT ON TRAITE LE CODE POUR
VERIFIER SON LEXIQUE

ET ON FAIT CELA TOKEN APRES TOKEN

ON RETOURNE LE RESULTAT DE CETTE ANALYSE HMMM

QUI PEUT FAIRE ÇA ???

11



 AUTOMATE FINI DETERMINISTE 

12



13



14



L'ANALYSE SYNTAXIQUE 
Le parseur : une étape clé dans les compilateurs.
Transforme les tokens (produits par l'analyse lexicale) en
une structure compréhensible.

L'analyse syntaxique est une étape essentielle dans les
compilateurs. Elle permet de vérifier si le programme respecte
les règles de la grammaire. Le parseur transforme les tokens,

fournis par l'analyse lexicale, en une structure logique. 15



L'ANALYSE SYNTAXIQUE 

Il construit une structure appelée arbre de syntaxe.

Utilise une grammaire pour comprendre le programme.

Identifie les erreurs syntaxiques.

L'analyse syntaxique est une étape essentielle dans les compilateurs. Elle
permet de vérifier si le programme respecte les règles de la grammaire. Le

parseur transforme les tokens, fournis par l'analyse lexicale, en une structure
logique. 16



L'ANALYSE SYNTAXIQUE 
Il construit une structure appelée arbre de syntaxe.

Voici un exemple d’arbre de syntaxe. Chaque noeud représente une
partie importante de la structure, comme les opérateurs ou les

variables. Les feuilles, elles, représentent les éléments élémentaires de
notre programme. 17



L'ANALYSE SYNTAXIQUE 
Il construit une structure appelée arbre de syntaxe.

Voici un exemple d’arbre de syntaxe. Chaque noeud représente une
partie importante de la structure, comme les opérateurs ou les

variables. Les feuilles, elles, représentent les éléments élémentaires de
notre programme. 18



L'ANALYSE SYNTAXIQUE 
Utilise une grammaire pour comprendre le programme.

Voici un exemple d’arbre de syntaxe. Chaque noeud représente une
partie importante de la structure, comme les opérateurs ou les

variables. Les feuilles, elles, représentent les éléments élémentaires de
notre programme.

<programme> ::= <instruction> 

<instruction> ::= "if" "(" <expression> ")" "{" <instruction> "}" | "return" <expression> ";”

<expression> ::= <terme> | <terme> <opérateur> <terme>

 <terme> ::= <identifiant> | <entier>

19



L'ANALYSE SYNTAXIQUE 
Supposons que nous ayons cette grammaire LL(1)...

Une grammaire LL(1) est un type particulier de grammaire hors-
contexte qui peut être encodée de manière non ambiguë dans une table
de parsing en deux dimensions, tout en ne regardant qu’un seul jeton à

la fois (exactement comme nous le souhaitons !).

Synch ???

En parsing, synch est utilisé pour la récupération des erreurs,
notamment dans les algorithmes de parsing LL(1).

 Cela améliore la robustesse du parseur en lui permettant de
gérer plusieurs erreurs sans arrêter l'exécution.

 tokens coming from the scanner 

 the non-terminal lying on the top of the stack of the LL(1) 

20



L'ANALYSE SYNTAXIQUE 
Prenons l’exemple: for id and = id id ; ; ) ; $ 

21



L'ANALYSE SYNTAXIQUE 
À ce stade, un arbre syntaxique abstrait (AST) est génér

   =
  / \

 a    -
        / \

        b   4

22



ANALYSE
SÉMANTIQUE

23



VÉRIFIE SI LE PROGRAMME EST LOGIQUE ET COHÉRENT
DANS SON CONTEXTE.

LE LEXER ET LE PARSER S'OCCUPENT DE LA STRUCTURE
SYNTAXIQUE DES PROGRAMMES, L'ANALYSEUR

SÉMANTIQUE VÉRIFIE SI CES PROGRAMMES ONT UN SENS

 LES RÈGLES DU LANGAGE AU-DELÀ DE LA GRAMMAIRE ET
DÉTECTE DES ERREURS QUI NE PEUVENT PAS ÊTRE
IDENTIFIÉES PAR L'ANALYSEUR SYNTAXIQUE SEUL,

24



LES ERREURS LIÉES AU CONTEXTE.
LES INCOHÉRENCES DE TYPE.

L’UTILISATION INCORRECTE DE CONSTRUCTIONS DU
LANGAGE.

SORTIE DE L’ANALYSEUR SÉMANTIQUE
IDÉALEMENT : AUCUNE SORTIE !

EN CAS D’ERREURS, ELLES SONT SIGNALÉES SOUS FORME DE
MESSAGES EXPLICITES.

25



MAIN MANQUANTE : UNE FONCTION VOID MAIN(VOID) EST OBLIGATOIRE POUR
EXÉCUTER UN PROGRAMME.

DÉCLARATION OBLIGATOIRE : LES VARIABLES DOIVENT ÊTRE DÉCLARÉES AVANT UTILISATION
DANS LA PORTÉE COURANTE.

TYPE VOID INTERDIT : LES VARIABLES NE PEUVENT PAS AVOIR LE TYPE VOID.
ARGUMENTS DE FONCTION : VÉRIFIEZ LE NOMBRE ET LE TYPE DES ARGUMENTS PASSÉS À UNE

FONCTION.
BREAK ET CONTINUE : CES INSTRUCTIONS NE PEUVENT ÊTRE UTILISÉES QU'À L'INTÉRIEUR DES

BOUCLES.
TYPES COMPATIBLES : LES OPÉRATIONS BINAIRES NÉCESSITENT DES TYPES COMPATIBLES POUR

ÉVITER LES ERREURS.
TABLE DES SYMBOLES : ELLE EST MISE À JOUR AVEC LES TYPES ET LES DÉCLARATIONS POUR

CHAQUE VARIABLE.
ERREURS SIGNALÉES : L’ANALYSEUR NE GÉNÈRE PAS DE SORTIE, SAUF POUR SIGNALER DES

ERREURS.
VALIDATION DES CONTEXTES : VÉRIFIE QUE CHAQUE INSTRUCTION EST UTILISÉE DANS UN

CONTEXTE APPROPRIÉ.
INFÉRENCE DE TYPES : L’ANALYSEUR DÉDUIT LES TYPES DES EXPRESSIONS ET DES

IDENTIFICATEURS.

26



27



CODE GEN

28



INITIALISATION DE LA MÉMOIRE : ASSIGNER DES VALEURS
CONSTANTES À DES ADRESSES MÉMOIRE POUR STOCKER LES

RÉSULTATS.

OPÉRATION D'ADDITION : TRADUIRE L'ADDITION EN INSTRUCTION
INTERMÉDIAIRE (ADD, #1, #2, 5000).

VALIDATION DES TYPES : VÉRIFIER LA COMPATIBILITÉ DES TYPES
DES OPÉRANDES AVANT DE GÉNÉRER LE CODE.

UTILISATION DE LA MÉMOIRE : STOCKER LE RÉSULTAT DE
L'ADDITION DANS UNE ADRESSE MÉMOIRE (EX. 5000).

OPTIMISATION À POSTERIORI : SIMPLIFIER LE CODE GÉNÉRÉ EN
RÉDUISANT LE NOMBRE D'INSTRUCTIONS. 29



STOCKAGE DES RÉSULTATS : ASSOCIER CHAQUE CALCUL À UNE
ADRESSE MÉMOIRE POUR UNE RÉCUPÉRATION FUTURE.

SÉCURITÉ DES VALEURS : VÉRIFIER QUE LES VARIABLES SONT
CORRECTEMENT TYPÉES AVANT LE TRAITEMENT.

GÉNÉRATION DE TROIS ADRESSES : UTILISER UNE STRUCTURE À
TROIS ADRESSES POUR CHAQUE OPÉRATION.

VÉRIFICATION DES ERREURS : IDENTIFIER LES ERREURS COMME LES
TYPES INCOMPATIBLES AVANT LA GÉNÉRATION DU CODE.

TRANSITION VERS LE CODE MACHINE : CONVERTIR LE CODE
INTERMÉDIAIRE EN INSTRUCTIONS MACHINE APRÈS VALIDATION.

30



BACK END

31



LE BACK-END DU COMPILATEUR TRADUIT LE CODE INTERMÉDIAIRE
EN CODE MACHINE SPÉCIFIQUE À L'ARCHITECTURE CIBLE.

L'ALLOCATION DE REGISTRES DANS LE BACK-END RÉSOUT UN
PROBLÈME DE COLORIAGE DE GRAPHES POUR OPTIMISER

L'UTILISATION DES REGISTRES.

LE CODE INTERMÉDIAIRE OPTIMISÉ EST TRANSFORMÉ EN CODE
ASSEMBLEUR CIBLE AVEC UN PROCESSUS DE TABLE DE

CORRESPONDANCE.

LE PROCESSUS DE TRADUCTION EN ASSEMBLEUR EST UNE SIMPLE
RECHERCHE DANS UNE TABLE DE CORRESPONDANCES.

32



L’OPTIMISATION PEEPHOLE AMÉLIORE LES INSTRUCTIONS
ASSEMBLEUR POUR RENDRE LE CODE PLUS EFFICACE SUR LE

MATÉRIEL CIBLE.

L’ASSEMBLEUR ET LE LINKER GÉNÈRENT UN FICHIER BINAIRE
EXÉCUTABLE À PARTIR DU CODE MACHINE.

LE BACK-END NÉCESSITE PLUSIEURS ÉTAPES DÉTAILLÉES POUR
PRODUIRE UN BINAIRE, DÉPENDANTES DE LA PLATEFORME CIBLE.

33


